SFP-1231-20

12Gbps Video SFP Optical Transceiver, 20km Reach

Features

SD/HD/3G/6G/12G-SDI SFP Transceiver ST 259, ST 292-1,ST 424, ST-2081 and ST-2082 compatible Metal enclosure for Lower EMI 1310nm DFB laser transmitter Support pathological patterns for SD-SDI, HD-SDI, 3G-SDI,6G-SDI and 12G SDI Compliant with SFF-8472 with duplex LC connector The module's receiver contains reclocker ROHS compliant(lead free) single 3.3V power supply Hot-pluggable SFP footprint Operating case temperature range: 0 to +70° C

Applications

Serial Digital Fiber Transmission System for SMPTE ST 259, SMPTE ST 344, SMPTE ST 292-1/2, SMPTE ST 424, SMPTE ST 2081-1 and SMPTE ST 2082-1 Signals UHDTV/HDTV/SDTV Service Interfaces

Description

Video transceiver is designed to transmit/receive data rates from 50Mbps to 11.88Gbps, compliant with SMPTE ST 2082-1 (12G UHD-SDI), ST 2081-1 (6G UHD-SDI), ST424 (3G SDI), ST 292-1 (HD-SDI), and ST 259 (SD-SDI). Video transceiver supports SDI pathological patterns signals.

The transceiver includes threse sections: a DFB laser, a PIN photodiode integrated with a trans-impedance preamplifier (TIA) ,Reclocker ,and a MCU controller. The transceiver is compatible with SFP Multi-Source Agreement (MSA) .

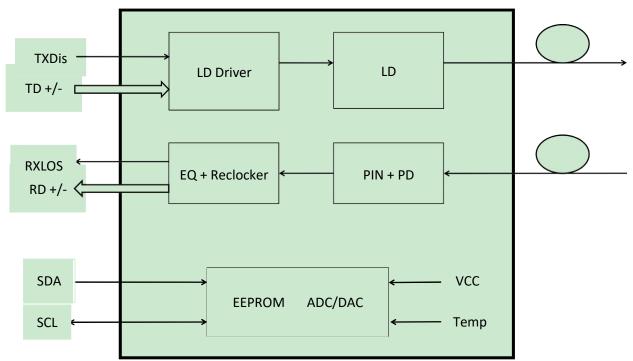


Figure 1. Module Block Diagram

Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
Supply Voltage	V _{cc}	-0.5	4	V
Storage Temperature	Ts	-40	+85	°C
Operating Humidity	-	5	85	%

Recommended Operating Conditions

Parameter	Symbol	Min	Typical	Max	Unit
Operating Case Temperature	Tc	0		+70	°C
Power Supply Voltage	Vcc	3.13	3.3	3.47	V
Power Supply Current	lcc		450		mA
Data Rate			12		Gbps

Optical and Electrical Characteristics

Parameter	Symbol	Min	Typical	Max	Unit	Notes
Transmitter						
Center Wavelength	λς	1300	1310	1320	nm	
Spectral Width (-20dB)	σ			1	nm	
Side Mode Suppression Ratio	SMSR	30			dB	
Average Output Power	Pout	-3		1	dBm	1
Extinction Ratio	ER	4			dB	

Data Input Swing Differential			V _{IN}	400		1000	mV	2	
Input Differential Impedance		Z _{IN}	90	100	110	Ω			
SD-SDI					1500				
	Н		HD-SDI				270		
Rise/Fall Time	(20%~8	0%)	3G-SDI	tr/tf			135	ps	3
			6G-SDI				80		
			12G-SDI				45		
			SD-SDI				0.2		
			HD-SDI				1		
	Timing	Jitter	3G-SDI				2		
			6G-SDI				4		
			12G-SDI				8		
Output Jitter			SD-SDI				0.2	UI	4
			HD-SDI				0.2	-	
	Alignm	ent	3G-SDI				0.3		
	Jitter		6G-SDI				0.3		
			12G-SDI				0.3		
	1	Disable)		2.0		Vcc	V	
TX Disable		Enable			0		0.8	V	
		Fault			2.0		Vcc	V	
TX Fault		Norma			0		0.8	V	
				Receive	er				
Center Wavele	ength			λ _c	1260		1580	nm	
Receiver Sens		11.88Gb	ps				-11	dBm	
Receiver Sensitivity@ 5.94Gbps					-13	dBm	5		
Receiver Sensitivity@ 2.97Gbps					-15	dBm	-		
	Receiver Overload			1			dBm	6	
LOS De-Assert			LOSD			-18	dBm		
LOS Assert			LOSA	-28			dBm		
LOS Hysteresis		LOSH	1		4	dB			
Data Output Swing Differential		Vout	400	800	800	mV	3		
LOS				High	2.0		Vcc	V	
103				Low			0.8	V	

Note:

- 1. The optical power is launched into SMF.
- 2. PECL input, internally AC-coupled and terminated.

3. Rise and fall times, 20% to 80%, are measured following a fourth-order Bessel-Thompson filter with a bandwidth of 0.75 x clock frequency corresponding to the serial data rate.

- 4. UI means one period.
- 5. MeasuredWith Pathological Patterns 11.88Gpbs(4096*2160 P60,100% Bars);5.94Gpbs (4096*2160 P29.97,100% Bars);2.97Gpbs (2048*1080 P50,100% Bars).
- 6. Internally AC-coupled, minimum input overload power for SMPTE ST 2081-1, SMPTE ST 2082-1.

Timing and Electrical

Parameter	Symbol	Min	Typical	Max	Unit
Tx Disable Negate Time	t_on			1	ms
Tx Disable Assert Time	t_off			10	μs
Time To Initialize, including Reset of Tx Fault	t_init			300	ms
Tx Fault Assert Time	t_fault			100	μs
Tx Disable To Reset	t_reset	10			μs
LOS Assert Time	t_loss_on			100	μs
LOS De-assert Time	t_loss_off			100	μs
Serial ID Clock Rate	f_serial_clock		100		KHz
MOD_DEF (0:2)-High	V _H	2		Vcc	V
MOD_DEF (0:2)-Low	VL VL			0.8	V

Diagnostics Specification

Parameter	Range	Unit	Accuracy	Calibration
Tx Disable Negate Time	0 to +70	С°	±3°C	Internal / External
Voltage	3.0 to 3.6	V	±3%	Internal / External
Bias Current	0 to 100	mA	±10%	Internal / External
TX Power	-3to +1	dBm	±3dB	Internal / External
RX Power	-24to +1	dBm	±3dB	Internal / External

I2C Bus Interface

The I2C bus interface uses the 2-wire serial CMOS E2PROM protocol. The serial

interface meets the following specifications:

1.Support a maximum clock rate of 280Khz.

2. Input/Output levels comply with LVCMOS/LVTTL or compatible logics.

Low: 0 - 0.8 V

High: 2.0 – 3.3 V

Undefined: 0.8 - 2.0 V

Pin Description

Pin	Signal Name	Description	Plug Seq.	Notes
1	VEET	Transmitter Ground	1	
2	VEET	Transmitter Ground	3	
3	NC	Not Connected 3		
4	VEET	Transmitter Ground	3	
5	SCL	SCL Serial Clock Signal	3	Note 1
6	SDA	SDA Serial Data Signal	3	Note 1
7	VEER	Receiver ground 3		
8	LOS	Loss of Signal	3	Note 2

9	NC	Not Connected	1	
10	NC	Not Connected	1	
11	VEER	Receiver ground	1	
12	RD-	Inv. Received Data Out	3	Note 3
13	RD+	Received Data Out	3	Note 3
14	VEER	Receiver ground	1	
15	VCCR	Receiver Power Supply	2	
16	VCCT	Transmitter Power Supply	2	
17	VEET	Transmitter Ground	1	
18	TD+	Transmit Data In	3	Note 4
19	TD-	Inv. Transmit Data In	3	Note 4
20	TX_DIS	Transmitter Disable	1	Note 5

Note:

Plug Seq.: Pin engagement sequence during hot plugging.

1. SCL,SDA. They should be pulled up with a $4.7k \sim 10k\Omega$ resistor on the host board to a voltage between 3.15V and 3.6V.

2. LOS is an open collector output, which should be pulled up with a $4.7k \sim 10k\Omega$ resistor on the host board to a voltage between 3.15V and 3.6V. Logic 1 indicates loss of signal; Logic 0 indicates normal operation. In the low state, the output will be pulled to less than 0.8V.

3. RD-/+: These are the differential receiver outputs. They are internally AC-coupled 100 differential lines which

should be terminated with 100Ω (differential) on the hostboard.

4. TD-/+: These are the differential transmitter inputs. They are internally AC-coupled, differential lines with

 100Ω differential termination inside the module.

5. TX_DIS is an input pin that is used to shut down the transmitter optical output. It is pulled up within the

module with a $4.7k \sim 10k\Omega$ resistor. Its states are:

Low (0 ~0.8V):	Transmitter on
(0.8V ~ 2.0V):	Undefined
High (2.0 ~3.465V):	Transmitter Disabled
Open:	Transmitter Disabled

Pin Definition

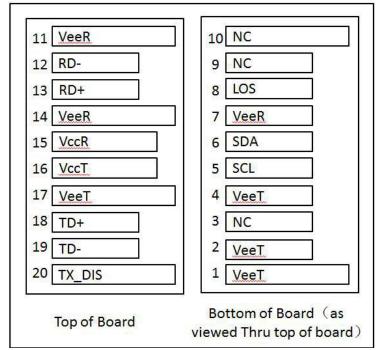


Figure 2. Electrical Pin-out Details

Regulatory Compliance

Feature	Standard
Laser Safety	IEC 60825-1:2014 (Third Edition)
Environmental protection	2011/65/EU
CE EMC	EN55032: 2015 EN55035: 2017 EN61000-3-2:2014 EN61000-3-3:2013
FCC	FCC Part 15, Subpart B; ANSI C63.4-2014
Product Safety	EN/UL 60950-1, 2nd Edition, 2014-10-14

CAUTION:

Use of controls or adjustment or performance of procedures other than those specified herein may result in hazardous radiation exposure.